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Blind Equalization With the Lattice Constant Modulus Algorithm

R.A. Axford, Jr.

Naval Command, Control and Ocean Surveillance Center
RDTE Division, Code 844, San Diego, CA 92152-5733

Abstract This paper presents an evaluation of the performance alternate value, say fiR2, only results in a scaling of the
of the lattice constant modulus algorithm (LCMA) in blind amplitude of i(n) by P' 2. While the appropriate selection ofR2
channel equalization. The convergence performance of LCMA is important for smooth switching between CMA and the
is compared to that of its transversal counterpart in equalizing decision-directed mode [41, we see that, except for this scaling,
the distortion of four progressively more stressing finite the CMA cost function is independent of the transmitted
impulse response channels for 8-PSK and 16-QAM signals. constellation.
The results indicate that while the convergence behavior ofboth algorithmos depends :Longly on the transmitted It is well known that CMA converges more slowly and exhibits
constellation, LCMA exhibits s=urotno performance for 16- greater residual mean-square estimation error after convergence

for QAM than for PSK signals. These results are notQAM as the spectral dynamic range of the channel increases. surprising if we consider the error function component of the

1 Introduction CMA stochastic gradient weight update:

In traditional adaptive channel equalization schemes, training e(n) = S(n)(P(nf -A 2 ). (2)
sequences of known data are periodicaly sent by the For QAM, e(n) is non-zero for perfect symbol estimates while
transmitter to allow adjustment of the receiver's equalizer for PSK it is zero for perfect symbol estimates.
coefficients. Blind equalization techniques accomplish the
adjustment of adaptive equalizer coefficients without the use of It is possible to accelerate blind equalizer convergence for
training sequences. The majority of blind equalization schemes QAM signals by employing variations of CMA that take
can be categorized as either Bussgang techniques or advantage of knowledge of the transmitted constellation [51,
polyspectra-based techniques [1]. Members of the Bussgang [6]. Here, however, we will study the performance of a CMA-
family are typically similar to the LMS algorithm in that convergence-accelerating technique for which knowledge of the
stochastic gradient descent techniques are used to minimize a transmitted constellation is unnecessary, namely the lattice
cost function that depends on both the output of the equalizer constant modulus algorithm (LCMA) [7]. The methods used in
and some (known or assumed) statistical description of the this paper are based on the early stochastic gradient lattice
transmitted signal. The most widely utilized of the Bussgang (SGL) equalizer work of Satorius and Alexander in [8], and on
techniques for blind equalization is the constant modulus the more recent comparative evaluation of several blind
algorithm (CMA) [2], [3]. CMA is based on the recognition equalization algorithms by Shynk et al. in [9].
that multipath distortion and additive interference cause
amplitude fluctuations in a signal that, in the absence of these 2 The Transversal and Lattice Constant Modulus
impairments, would otherwise exhibit a constant amplitude (at Algorithms
the slicing instants). CMA is also applicable to signals with This section defines the two blind equalization algorithms
multiple amplitudes, such as M-ary QAM, in which the considered in the paper. In all that follows, use is made of the
"constant modulus' becomes a quantity related to the average notational conventions for complex-valued random variables

amplitude of the constellation. In this paper we will compare coned in v1ib.

transversal and lattice filter implementations of the "2-2" contained in [101.

variant of CMA [3], each based on stochastic gradient 2.1 Transversal CMA (TCMA)
minimization of the phase-blind cost function The coefficient update formula of TCMA with a normalized

A1 E[(Pfn~ -1R)]; R2 ( step-size can be expressed as

4i ' Ea' w(n + 1) = w(n) - IAT'(n)X(n)(jP(nf - R,)u(n) (3)

where ai(n) is the equalizer's estimate of the transmitted where * indicates complex conjugate,
symbol, and the expected values in the definition of the u(n)=[u(n) u(n-1) ... u(n-L)]f (4)
constant R 2 are taken over all symbols {aj},. in the
transmitted constellation, is the vector of samples of the received waveform u(n),

From (1) we note that J depends on the transmitted ()[%() w,(n) ... wL(n)IT (5)

constellation through the constant R2. However, the use of an is the vector of variable tap-weights at time n,



L When training sequences are used and the cost function is
i(n) .= w"(Q)u(n) W= ' (n)u(n- 1) (6) simply the mean-squared-errr between the equalizer output

and the transmitted symbol a(n)
is the output of the L+I tap equalizer at time n, a

P (1- a (,,- 1) + u(,,)(,,) (7) J =ELa(n)_a(n1.(n)= (I aAn -1) +u'(nu~n)(7) the resulting error function component (e(n) = h(n) -a(n)) ofis a running estimate of the power in the equalizer, and tersligerrfnto opnn en ~)-an)o0s a (8g ethe stochastic gradient weight update is linear. Furthermore,i eas<e (8) after the PARCOR coefficients have converged, theis the normalized step-size parameter. The estimate defined in autocorrelation matrix of b(n)
(7) is biased and over-estimates the power in the equalizer by
art. The appropriate initialization of (7) is DA-E[b(n)b'(n)] (19)

P/(0) = (L + 1)P.aI. (9) is diagonal and given by

where P. is the true power in u(n). Reducing ar decreases D=diag[E[jb(n)2] E[IbiJn)l2] ... E. (20)
both the step size and the asymptotic MSE of the algorithm. Thus the eigenvalues of D consist of the backward prediction-
Increasing a. allows the algorithm to converge more quickly error powers, orders 0 through L. Typically, the dynamic
at the expense of increasing the asymptotic MSE. range of these powers is less, often much less, than the

dynamic range of the eigenvalues of the correlation matrix of
2.2 Lattice CMA (LCMA) the received waveform samples
The structure of the LCMA equalizer is shown in figure 1. The
lattice order recursion update equations are given by RAE[u(n)u'(n)]. (21)

f,(n)= h.(n)-K,(n)b,_1 (n-1) (10) As a result, the quadratic performance surface of the trained
stochastic gradient lattice (SGL) equalizer in the space of the

b~n)= b 1 (n-1)-K•(n)ft_1 (n) (11) tap weights g(n) will be considerably less distorted than that of

where K1(n) is the I"-stage PARCOR coefficient, and f,(n) the corresponding LMS transversal equalizer in the space of the

and b1(n) are the I'-order forward and backward prediction- tap weights w(n) when the spectral dynamic range of the
errors, respectively, all at time n. Note that f0(n) = bo(n) = u(n). received signal u(n) is large. The linearity of the *algorithm-
The I"-stage PARCOR coefficient is updated according to driving" error function, combined with the fact that D is

( ^diagonal, allows a decoupling of the update equations for the
K 1(n+l)=K,(n)+P•(n)[b 1 (n-1) ftn) + f,_1 (n)b'~n)] (12) elements of g(n) in the trained SGL equalizer to the extent that

where

f(n) = (l-aL)P,,(n -1) +[[If-(n)2 + ý,• (n - 1)121 (13) -- ,

is a biased estimate of the total prediction-error power entering (u)K-
the I*-stage, and O<aL <1 is a normalized step size K.(n)

parameter. The update (12) accomplishes a method-of- - b,(R)

steepest-descent minimization of the cost function 1

JWA2(E[(nA2J+E[InfI) (14) (a)

The purpose of the lattice structure in the context of channel u(n) Stage SM-.-a1ge Mn) Stage (n)

equalization is to transform the correlated input sequence 4(n) i bi(n) 2 L bL(n)

u(n),u(n-1), ... , u(n-L). into the uncorrelated sequence
b0(n),bi(n),..., bL(n) of backward prediction-errors. (It can
be shown that the information content of both sequences is *()
identical. See section 4.16 of [10].) The significance of this n n(

when training sequences are used can be appreciated by
viewing the lattice equalizer as a transversal filter with tap- + +
weights (joint process estimation coefficients) + + +

g(n)=[g&(n) g,(n)... gL(n)]r, (15)

"pre-conditioned* input vector (n) F 1

b(n)=[bo(n) b,(n) ... bL(n)]", (16)

and output (b)
L

i(n) = gH (n)b(n) = g;(n)b,(n). (17) Figure 1 Lattice CMA Equalizer; (a) single lattice stage;
,-0 (b) (L+1)-tap lattice equalizer using cascaded stages.



'(i) a separate normalized step size, and (ii) an "order-local" K,(O)=O, t=1,2,.....I (26)
error function v,(n)=a,(n)-a(n) may be used in updating
each g,(n) [8]. (a,(n) is the I"-order joint process estimate of for LCMA. For both algorithms, this corresponds to an initial
a(n).) all-pass-filter equalizer transfer function with a group delay of

5.

In LCMA, since the error function component of the weight
update is nonlinear, order-local error terms cannot be used. 3. Simulation Configuration
The update equations for the elements of g(n) remain coupled A schematic diagram of the computer simulations is shown in
through their joint use of e(n) defined in eq. (2). figure 2. The transmitted signal a(n) consists of an
Consequently, some of the "modularity" of the trained SGL uncorrelated sequence of either 8-PSK symbols with unit
equalizer is lost in LCMA. Nonetheless, separate normalized amplitude, or 16-QAM symbols with real and imaginary
step sizes can still be used for each element of g(n) in LCMA. components drawn from {±1, ± 3}. The appropriate values of

The t'k variable tap-weight g,(n) of the LCMA equalizer is R 2 from eq. (1) are I and 13.2, respectively.

updated according to

g,(n + 1) =&(n) - f( 2 _ R.b" (n) (22) 4 2

where 
EQUALIZER

Pb,(n) = (1-aL ),(n- 1)+Ib,(n)12  (23) Z 7+e-(

is a biased estimate of the I"-order backward prediction-error. Estmation

power, and 0 < aL < 1 is the normalized step size parameter. Error

Varying aL has the same general effects on the convergence Figure 2 Computer simulation configuration.

time and asymptotic MSE of LCMA as varying a, does on the
performance of TCMA. The impulse response h(n) of the channel is given by

2.3 Blind Equalizer Coefficient Initialization h(n) = k8Q(n - 1) + hk6(n - 2) + hkb(n - 3) (27)

In [2], Godard argued that undesirable local minima of the cost where

function J in the space of the variable tap weights can be 1 r (.2 . 2,]
avoided by using what has come to be called the "spike hl =c22o1h(hk J , (28)
initialization". This consists of setting the initial value of all
variable tap-weights to zero with the exception of a single 10, otherwise

weight at or near the center of the equalizer. According to and
Godard, the initial value of this "reference" tap-weight should h =[h , h 3 ]T. (29)
be set to a value larger than a constant that depends on Thus, the channel's impulse response is normalized such that
moments of the transmitted constellation and "the channel h1

2 +h4 + ý = 1 for all values of the bandwidth parameter W.
impulse response sample having the largest magnitude" (see eq. Except for this normalization, the channel model is the same
(38) of 12D. The universal validity of this assertion has used by Satorius and Alexander in [8]. Complex additive white
subsequently been disproven [11], [12]. The search for a blind Gaussian noise v(n) is added to the output of the channel to
equalizer that will converge to a global minimum regardless of form the received waveform u(n). The real and imaginary
the initial values of the variable tap-weights is a topic that is components of %(n) are independent, zero-mean Gaussian
beyond the scope of this paper. It is sufficient for our purposes random processes, each with variance 0.001. The transritted
to note that while there are situations of significant practical sequence is delayed by the combined group delay of the channel
interest for which CMA fails to converge from the "spike and equalizer (7 samples), and compared to the estimates
initialization", there are also situations of significant practical produced by the equalizer. The estimation error e..,(n) is
interest for which CMA does in fact successfully converge formed as shown in figure 2. Given that the channel impulse
using this initialization, response samples are real-valued and that perfect carrier

In all simulations that follow, we set L+1=l1 taps, and the recovery is assumed, a decision-directed phase locked loop is

initial tap-weight vectors are always set to not used. Nonetheless, the tap-weights in w(n) and g(n) are
rotated at each iteration such that the imaginary component of

w(0) =[0 0 0 0 0 1 0 0 0 0 Of (24) the reference tap (I = 5) is kept equal to zero. This was found

for TCMA, and to be necessary in order to prevent ii(n) from spinning slightly
for the largest values of ar.

g(O)=[O 0 0 0 0 1 0 0 0 0 Of, (5)
with



4 Results Figure 5 shows the LCMA (solid) and TCMA (dotted)
Figure 3 shows four LCMA learning curves, one corresponding convergence performance curves for 4 values of W and both
to each value of W as shown, for the 16-QAM signal and modulations. These performance curves summarize the
aL = 0.0001. Each curve was obtained by ensemble-averaging information gathered from a total of 134 smoothed learning

le.4{ over 10 independent trials. The ensemble-averaged curves. The left-hand (right-hand) extreme of any performance
curves were further smoothed with a 50-point moving-average curve corresponds to the largest (smallest) step size used.
filter as was done in [9]. Figure 4 shows three LCMA learning Horizontal dashed lines indicate the MSE levels achieved by an
curves for W=2.9 and the values of aL indicated on the plot. 11-tap Wiener equalizer (cost function defined in eq. (18)) for
Note that while decreasing a5 increases the convergence time, 8-PSK (unit amplitude) and 16-QAM ({±1,± 3}) when the
it also reduces the asymptotic MSE e2 . thermal noise variance is 0.001. Note that as W increases, the

minimum MSE for this 16-QAM constellation increases more
10 rapidly than does that of the 8-PSK signal. Thus 2 horizontal

LCMA, 16-QAM,aL =0.0001 dashed lines appear for W23.3, the lower of which
corresponds to 8-PSK in figures 5 (c) and (d).

1 W= 3.1 For both algorithms, the transmitted constellation is a stronger
W 3factor in determining the convergence performance than is the

MSE spectral dynamic range of the channel (at least for the
10•1 W=3.5 constellations and channel parameters used here). Both

algorithms always converge more rapidly for 8-PSK than for
16-QAM when channel conditions are equal. Furthermore,

"W= 2.9 both algorithms converge more quickly for 8-PSK under the
10-20 10K 20K 30K 40K 50K most stressing channel conditions used in these simulations

Iterations (W=3.5) than for 16-QAM under the least stressing channel
conditions (W=2.9).

Figure 3 LCMA learning curves for four values of W. For 8-PSK, these simulation results indcate that the

100 convergence performance of LCMA is actually slightly inferior

LCMA, 16-QAM, W= 2.9 to that of TCMA until the eigenvalue ratio of R reaches
roughly 16 dB. However, for both modulations, LCMA is less

MSE sensitive than TCMA to increases in the spectral dynamic
aXL = 0.001, E' = 0.2082 range of u(n).

10-1: = 0.0005, el 0.0925: For 16-QAM, the convergence performance of LCMA becomes
superior to that of TCMA as the eigenvalue ratio of R increases

a, 0.0001 E'L 0.0199L above roughly 13 dB. Thus the stochastic gradient lattice can
indeed accelerate the convergence of a CMA blind equalizer for
amplitude modulated signals.

10-2,
0 10000 20000 30000 5 Summary

Iterations This paper has presented the first evaluation of the convergence
performance of the lattice constant modulus algorithm in blind

Figure 4 LCMA learning curves for three values of aL . channel equalization. The appropriate "spike initialization' of
the LCMA equalizer has been demonstrated. The clear

In order to compare the convergence performance of L A convergence rate superiority of trained SGL equalizers over
and TCMA independently of the values of the step-size trained transversal LMS equalizers is not always observed in
parameters, several smoothed learning curves were produced the corresponding "2-2" CMA versions of these filters. The
for each algorithm using various values of aL and a,. From convergence performance of both lattice and transversal CMA
these curves, the asymptotic MSE E' and the number of equalizers depends strongly on the transmitted constellation.
iterations required to reach e' were determined and plotted However, as the spectral dynamic range of the received signal
producing convergence performance curves. As noted in [91, increases, the convergence performance of LCMA is degraded
when comparing two adaptive equalization algorithms in this to a lesser degree than that of TCMA. Further work is required
way, if one algorithm's performance curves always lie below to fully understand effects of the spectral dynamic range of the
those of another, then the former algorithm clearly has superior received signal on the CMA performance surface.
convergence performance.



(a) W =2.9, ;. /A/.• =7.8 dB (R) (b) W=3.1, A,, /A•,=10.5dB(R)
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Figure 5 Convergence performance curves for LCMA (solid) and TCMA (dotted). Horizontal dashed lines indicate Wiener MSEs.
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